
Dylan Rankin [MIT] - September 9th, 2021

Overview of AI in HEP Readout
AI4EIC-Exp



Introduction
• Machine learning has become a common tool 

for broad spectrum of HEP problems


• Particle identification


• Calibrations/corrections


• Energy regression


• Jet/event classification


• Trigger/readout imposes limitations on use of 
ML


• Recent developments have further opened up 
the potential for ML solutions in this realm, 
exciting possibilities

2



HEP Data Processing / Readout

• Level-1 Trigger (hardware: FPGAs) - O(μs) hard latency


• High Level Trigger (software: CPUs) - O(100 ms) soft latency


• Offline (software: CPUs) - >1 s latencies

3



HEP Data Processing / Readout

• Level-1 Trigger (hardware: FPGAs) - O(μs) hard latency


• High Level Trigger (software: CPUs) - O(100 ms) soft latency


• Offline (software: CPUs) - >1 s latencies

4



ML @ HLT
• HLT allows use of CPUs for inference


• Heterogeneous systems also possible (being investigated)


• Similar to offline inference


• Typically still need to be aware of inference latency


• Can place ML algorithms later in trigger decisions to reduce 
average processing time


• Targeted for specific topologies, not used for full event 
reconstruction


• E.g. b-tagging, taus 

• Can reduce size/complexity of ML algorithm to lower latency


• Can utilize hardware accelerators


• E.g. GPUs, as-a-service

5



HLT: b-tagging
• Multiple algorithms/architectures (relatively mature usage)


• Ex. CMS:


• CSVv2: BDT


• DeepCSV: DNN, ~50k parameters


• Good online performance


• Run on small fraction of events


• Minimal performance degradation w.r.t. offline

6



HLT: Tau ID
• ML has become popular tool for tau identification


• Large CNN- and LSTM-based networks from 
CMS and ATLAS


• Much larger latencies than b-tagging networks, 
harder to implement into trigger


• Heterogeneous systems offer some promise 
(plans for future upgrades)

7O(1.5M) parameters



HLT: Heterogeneous Systems
• Heterogeneous systems can speed up ML inference 

significantly


• SONIC (see Nhan Tran’s talk) provides framework to 
take full advantage of coprocessor resources


• ML as-a-service


• Both FPGAs and GPUs shown to achieve maximal 
reduction in processing time in HLT tests (ML HCAL 
energy regression)


• Single GPU (FPGA) can seamlessly serve up to 
300 (1500) CPUs


• arXiv:2007.10359, arXiv:2010.08556

8

V100 GPU 

AWS f1 FPGA (VU9P)

https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2010.08556
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2010.08556


HEP Data Processing / Readout

• Level-1 Trigger (hardware: FPGAs) - O(μs) hard latency


• High Level Trigger (software: CPUs) - O(100 ms) soft latency


• Offline (software: CPUs) - >1 s latencies

9



ML @ L1
• Very different constraints and hardware 

compared to CPU/GPU


• Latencies of ~100 ns, scarce resources


• Can be difficult to develop without lots of 
specialized knowledge


• hls4ml facilitates usage of ML on FPGAs


• Support for many different architectures and 
frameworks


• Growing number of examples/proposed 
examples in ultra-low latency regime


• Refer to Nhan Tran’s talk for some more 
examples!

10



• hls4ml is a software package for creating implementations of neural networks 
for FPGAs and ASICs


• https://fastmachinelearning.org/hls4ml/


• arXiv:1804.06913


• Supports common layer architectures and model software, options for 
quantization/pruning


• Output is a fully ready high level synthesis (HLS) project


• Customizable output


• Tunable precision, latency, resources

11

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/pdf/1804.06913.pdf
https://fastmachinelearning.org/hls4ml/
https://arxiv.org/pdf/1804.06913.pdf


hls4ml Workflow

12



Inference on FPGAs

13



Inference on FPGAs

14



Inference on FPGAs

15



16

Inference on FPGAs
Every clock cycle 


(all layer operations 

can be performed 

simultaneously)



hls4ml Customization

17

• Multiple different knobs to adjust design for desired 
performance/latency/resource usage


• Pruning


• Quantization


• Reuse



Pruning
• Are all the pieces a given network necessary?


• Many techniques for determining “best” way to 
prune


• hls4ml naturally supports a method of 
successive retraining and weight minimization


• Use L1 regularization (penalty term in loss 
function for large weights)


• Remove smallest weights


• Repeat


• HLS automatically removes multiplications by 0

18

Lλ(w) = L(w) + λ∥w∥



Pruning
• Are all the pieces a given network necessary?


• Many techniques for determining “best” way to 
prune


• hls4ml naturally supports a method of 
successive retraining and weight minimization


• Use L1 regularization (penalty term in loss 
function for large weights)


• Remove smallest weights


• Repeat


• HLS automatically removes multiplications by 0

19

Lλ(w) = L(w) + λ∥w∥



Pruning
• Are all the pieces a given network necessary?


• Many techniques for determining “best” way to 
prune


• hls4ml naturally supports a method of 
successive retraining and weight minimization


• Use L1 regularization (penalty term in loss 
function for large weights)


• Remove smallest weights


• Repeat


• HLS automatically removes multiplications by 0

20

Lλ(w) = L(w) + λ∥w∥



Pruning
• Are all the pieces a given network necessary?


• Many techniques for determining “best” way to 
prune


• hls4ml naturally supports a method of 
successive retraining and weight minimization


• Use L1 regularization (penalty term in loss 
function for large weights)


• Remove smallest weights


• Repeat


• HLS automatically removes multiplications by 0

21

Lλ(w) = L(w) + λ∥w∥



Pruning
• Are all the pieces a given network necessary?


• Many techniques for determining “best” way to 
prune


• hls4ml naturally supports a method of 
successive retraining and weight minimization


• Use L1 regularization (penalty term in loss 
function for large weights)


• Remove smallest weights


• Repeat


• HLS automatically removes multiplications by 0

22

Lλ(w) = L(w) + λ∥w∥

>70% initial 
weights 
removed



Quantization
• hls4ml uses fixed-point classes for all computations


• Precision can be adjusted as needed (impacts 
accuracy, performance, resources)


• Can be combined with other customizations


• Binary & Ternary neural networks take this to very 
low precision: [2020 Mach. Learn.: Sci. Technol]


• Quantization-aware training - QKeras + support in 
hls4ml: [arXiv:2006.10159]

23

https://iopscience.iop.org/article/10.1088/2632-2153/aba042/meta
https://arxiv.org/pdf/2006.10159.pdf
https://iopscience.iop.org/article/10.1088/2632-2153/aba042/meta
https://arxiv.org/pdf/2006.10159.pdf


Reuse
• For lowest latency, 

compute all 
multiplications at once


• Reuse = 1 (fully parallel) 
→ latency = # layers)


• Larger reuse implies more 
serialization


• Allows trading higher 
latency for lower resource 
usage

24

Layer 1 Layer 2



CMS Phase 2 Upgrade
• For HL-LHC, CMS will upgrade 

every subdetector


• Trigger upgrade will provide strip 
tracking information at L1


• L1 will have (almost) full 
detector information


• Forward calorimeter completely 
upgraded with 3-dimensional 
readout


• Many new ML algorithms are 
looking to take advantage of this 
upgrade

25



HGCal PU ID
• CMS upgrade will install entirely new high 

granularity calorimeter


• 3-dimensional, silicon-based


• Without ID, extremely large number of clusters 
at 200 pileup


• BDTs developed to  
reject PU, discriminate 
between γ and π


• Highly efficient vs PU


• hls4ml supports BDTs 
through Conifer  
[JINST 15 P05026 (2020)]

26

https://arxiv.org/pdf/2002.02534.pdf
https://arxiv.org/pdf/2002.02534.pdf


L1 Tau ID
• Tracks at L1 allow more sophisticated tau identification


• Offline-like algorithm combines e/γ clusters with tracks to construct 
known tau decays


• Small MLP (3-layer) trained to identify taus using particle candidates


• Latency of 36 ns


• Benchmark L1 tau algorithm for CMS


• Improved performance potentially with CNNs/RNNs

27



CNNs
• Special adjustments necessary to 

implement convolutional networks on 
FPGAs


• HLS struggles with very long 
(nested) loops


• hls4ml is now able to synthesize large 
CNNs with good resource scaling


• Further optimizations possible for 
lower latencies


• arXiv:2101.05108

28

https://arxiv.org/pdf/2101.05108.pdf
https://arxiv.org/pdf/2101.05108.pdf


GarNet
• Graph networks have become very 

popular for complex geometric problems


• Iterative nature difficult for FPGAs


• Modified GarNet architecture 
implemented in hls4ml


• arXiv:2008.0360


• Model developed for HGCal cluster ID 
and energy regression


• Able to run in under 1 μs, fit within a 
single VU9P SLR

29

https://arxiv.org/pdf/2008.03601.pdf
https://arxiv.org/pdf/2008.03601.pdf


Other examples
• Many other possibilities for ML in trigger (and 

ongoing development)


• One highlight: New Physics auto encoder


• 8-layer dense network


• Trained only on minimum-bias background events


• Sensitive to anything that doesn’t look like 
standard background


• Can be run in ~100 ns

30



Conclusions
• Machine learning is an increasingly important part of HEP workflows


• Full advantage of the gains from ML requires integration with trigger/
readout systems


• Conventional CPU inference can only be done so fast


• Alternative architectures can offer major speedups (FPGAs, GPUs, others)


• hls4ml opens up possibilities for low latency ML inference on FPGAs


• Many possibilities for ML applications in trigger/readout on the horizon

31



BACKUP

32


